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CERN LHC (Large Hadron Collider)

5 Nobel Prize winners
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Enormous Data and Low Latency Challenge

Source: A3D3 Institute, https://a3d3.ai/ 

• Next-gen key experiments 
• up to Petabyte per second

• sub-100 ns latency

• cannot store everything

• Jet Tagging
• critical for selecting interesting events

• classify into 5 particle types initiating a jet: 

g / q / W / Z / t 

Large Hadron Collider (LHC)
Level-1 Trigger (L1T)

observed

dataclassified

result
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Overview

● Level 1 Trigger Challenge

○ jet tagging algorithm functions well

○ but too slow and too resource intensive

● Our innovations

○ linear-complexity interactions by Global Context Vectors

○ fine-grained mixed-precision quantization

○ distributed arithmetic

● Results

○ sub-100 ns latency

○ Digital Signal Processing (DSP) blocks of FPGA not required

○ best accuracy among state-of-the-art designs
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Graph Neural Networks (GNNs)

● Why GNNs? 
○ jets are naturally graph-structured

○ current approaches (like JEDI-net) adopt GNNs for particle-level relations

○ offer state-of-the-art accuracy

● Why challenging?
○ original JEDI-net compute all pairwise edges → O(N2) edge MLP fR (Ii ∣∣ Ij )

MLP: Multi Layer Perceptron
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Graph Neural Networks (GNNs)

● Why GNNs? 
○ jets are naturally graph-structured

○ current approaches (like JEDI-net) adopt GNNs for particle-level relations

○ offer state-of-the-art accuracy

● Why challenging?
○ original JEDI-net compute all pairwise edges → O(N2) edge MLP fR (Ii ∣∣ Ij )

○ prior FPGA-based GNNs [TECS’24, MLST’24] hit latency / resource walls 

(coarse-grained DSPs > 8.7k, fine-grained Lookup Tables LUT > 1M)

[TECS’24] Z. Que et al., "LL-GNN: Low latency graph neural networks on FPGAs for high energy physics." ACM TECS 2024

[MLST’24] P. Odagiu, et al., "Ultrafast jet classification at the HL-LHC." Machine Learning: Science and Technology, 2024.

MLP: Multi Layer Perceptron
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Key idea 1: Linearize interactions: Global Context Vector 

● Original JEDI-net: O(N2) edge MLP fR (Ii ∣∣ Ij )

● Explicit pairwise computation for global aggregation

○ compute a Global Context Vector (GCV):  W2⋅
1

𝑁
​∑jIj

○ broadcast this vector to update individual particles

● Each particle sees the jet’s global average + its own local features

○ still interaction-aware, but linear

○ reduces complexity from O(N2) to O(N)

Computing 

the GCV

Broadcast



8

Key idea 2: Fine-Grained Mixed-Precision Quantization

● per-weight bitwidth: a trainable variable

● Quantization-Aware Training: effective bitwidth in training loss

● Integrated pruning: weights with bitwidth as 0 are pruned automatically

● Majority of non-zero weights < 4 bits, high sparsity and high accuracy
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Key idea 3: Distributed Arithmetic (DA)

● Conventional designs 
○ rely on fixed-point multipliers for Constant Matrix-Vector Multiplications (CMVMs)

● Replace CMVMs with DA adder trees: using da4ml (Journal Session 2) 

● Decompose CMVM operations
○ into a static graph of shift-addition/subtraction operations: for fine-grained resources

● Common subexpression elimination 
○ remove redundant adders/subtractors

Naive 

implementation

DA

optimized

Y0 = X0 + X1 + X2 + X3

Y1 = 2X0 + X1 – X2 + X3

6 adders
Temp = X1 + X3

Y0 = X0 + X2 + Temp
Y1 = 2X0 – X2 + Temp

5 adders
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Automated Design Flow with Optimized Architecture

● Fully unrolled, static pipelined dataflow architecture
○ no resource sharing; data kept on-chip

○ deterministic latency: crucial for trigger synchronization

● Extend symbolic tracing 

capabilities of da4ml tool

○ Python-based model                   

→ Enhanced da4ml                       

→ Synthesizable RTL

○ generated RTL models: 

functionally validated by 

Verilator



11

Integration in CMS Correlator Trigger Layer 2 (CTL2)

● CTL2
○ 30 VU13P FPGAs, 5 x 6 FPGA nodes 

○ 6 nodes available per event

● Jet Tagger sits after jet           

clustering / sorting / buffering

● Latency budget
○ O(100 ns) per algorithm

○ deterministic for synchronization

● Our design
○ latency < 60~110 ns

JEDI-linear
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Evaluation: Accuracy

● JEDI-linear consistently 

outperforms GNN baselines

● 16 features, 64 particles, 

accuracy for

○ JEDI-linear: up to 82.4%

○ others: 80.4 … 81.2%

● improved accuracy vs prior 

FPGA-based architectures
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Evaluation: 

Latency & 

Resources

Best Latency 

3.7~ 11.5x 

lower 

latency
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Evaluation: 

Latency & 

Resources

0 Coarse-grained DSPs
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Evaluation: 

Latency & 

Resources

Fewest fine-grained LUTs

6.2x 

fewer 

LUTs
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Evaluation: 

Latency & 

Resources

Lowest iteration interval (II): time between processing successive jets
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Comparison with Non-GNN Models (Non-Permutation-Invariant)

● New Pareto Frontier

● Better accuracy with 

lower LUTs

● Not just a single point 

● A full design space 

better than prior work

[MLST’25] C. Sun, et al., "Fast Jet Tagging with MLP-Mixers on FPGAs." Machine Learning: Science and Technology, 2025.

[MLST’25]
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Future Work

● "linearization" algorithm-hardware codesign strategy
○ efficient and low latency transformer on FPGAs

○ demanding applications beyond FPGAs

● High performance trustworthy computing for jet tagging 
○ JEDI-linear + Bayesian neural network

● Other scientific domains requiring low latency
○ aerospace

○ healthcare

● Design automation with metaprogramming
○ use Python for static and dynamic optimization of C++
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Summary and Impact
Artifacts Evaluation Results: 

Available,

Evaluated Functional, 

Reusable,

Results Replicated

My webpage

● A1 Algorithmic Optimization: 
○ linearization with Global Context Vector strategy

○ reduces complexity from O(N2) to O(N)

● A2 Hardware Optimization
○ fine-Grained Mixed-Precision Quantization 

○ Distributed Arithmetic (DA)

○ end-to-end automation with RTL generation

● A3 Evaluation: compared to state-of-the-art
○ open source: https://github.com/calad0i/JEDI-linear

○ 3.7x to 11.5x lower latency, up to 6.3x lower LUT

○ less than 60 ns latency

● next-gen design for CERN: enabling new scientific discoveries

● public code base: novel optimizations for applications beyond jet tagging
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