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Enormous Data and Low Latency Challenge

* Next-gen key experiments
* up to Petabyte per second
« sub-100 ns latency
« cannot store everything

- Jet Tagging

« critical for selecting interesting events
 classify into 5 particle types initiating a jet:
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Overview

e Level 1 Trigger Challenge
o jet tagging algorithm functions well
o but too slow and too resource intensive

e Qurinnovations
o linear-complexity interactions by Global Context Vectors
o fine-grained mixed-precision quantization
o distributed arithmetic

e Results
o sub-100 ns latency
o Digital Signal Processing (DSP) blocks of FPGA not required
o best accuracy among state-of-the-art designs



Graph Neural Networks (GNNs)
o Why GNNs?

o jets are naturally graph-structured
o current approaches (like JEDI-net) adopt GNNs for particle-level relations
o offer state-of-the-art accuracy

[ Why challenging? MLP: Multi Layer Perceptron
o original JEDI-net compute all pairwise edges > _O(N?) edge MLP fg (I; | | I;)
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Graph Neural Networks (GNNs)
o Why GNNs?

o jets are naturally graph-structured
o current approaches (like JEDI-net) adopt GNNs for particle-level relations
o offer state-of-the-art accuracy

[ Why challenging? MLP: Multi Layer Perceptron

o original JEDI-net compute all pairwise edges > O(N?) edge MLP fg (I; | | I;)
o prior FPGA-based GNNs [TECS’24, MLST’24] hit latency / resource walls
(coarse-grained DSPs > 8.7k, fine-grained Lookup Tables LUT > 1M)
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[TECS’24] Z. Que et al.,, "LL-GNN: Low latency graph neural networks on FPGAs for high energy physics." ACM TECS 2024
[MLST’24] P. Odagiu, et al., "Ultrafast jet classification at the HL-LHC." Machine Learning: Science and Technology, 2024. 6



Key idea 1: Linearize interactions: Global Context Vector

o Original JEDI-net: O(N2) edge MLP f (I; | | ;)

e Explicit pairwise computation for global aggregation

o compute a Global Context Vector (GCV): Wz-%zjlj
o broadcast this vector to update individual particles

e Each particle sees the jet’s global average + its own local features

o still interaction-aware, but linear
o reduces complexity from O(N2) to O(N)
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Key idea 2: Fine-Grained Mixed-Precision Quantization

e per-weight bitwidth: a trainable variable

e Quantization-Aware Training: effective bitwidth in training loss

e Integrated pruning: weights with bitwidth as 0 are pruned automatically
e Majority of non-zero weights < 4 bits, high sparsity and high accuracy
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Key idea 3: Distributed Arithmetic (DA)

e Conventional designs
o rely on fixed-point multipliers for Constant Matrix-Vector Multiplications (CMVMs)
e Replace CMVMs with DA adder trees: using dadml (Journal Session 2)
e Decompose CMVM operations
o into a static graph of shift-addition/subtraction operations: for fine-grained resources

e Common subexpression elimination
o remove redundant adders/subtractors 5 adders
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Automated Design Flow with Optimized Architecture

e Fully unrolled, static pipelined dataflow architecture

o no resource sharing; data kept on-chip
o deterministic latency: crucial for trigger synchronization

e Extend symbolic tracing [ DDR & Other |/o]

capabilities of da4ml tool VR V4
( Local BUS
o Python-based model @AXI
- Enhanced da4ml

- Synthesizable RTL o
o generated RTL models: 2
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Integration in CMS Correlator Trigger Layer 2 (CTL2)

JEDI-linear
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® DS (MLST'24) ® GNN (MLST'24) = DS M (MLST'25)
® DSL (MLST'25) m JEDl-linear

Evaluation: Accuracy
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Evaluation:

Latency &

Resources

_ Acc. Latn. LUT FF Fax

Model Particles  Features (%) (ns) DSP (k) (k) BRAM  1II (clk) (MHz)

DS (MLST’24) [7] 8 3 < 64.0 95 626 386 121 4 3 N/A
DS (MLST’24) [7] 16 3 <694 115 555 747 239 4 3 N/A
DS (MLST’24) [7] 32 3 <759 130 434 903 359 4 2 N/A
GNN (MLST’24) [7] 8 3 <649 160 2,120 472 192 132 3 N/A
GNN (MLST’24) [7] 16 3 < 70.8 180 5362 1388 594 52 3 N/A
GNN (MLST’24) [7] 32 3 < 75.8 205 2,120 1,162 76l 12 3 N/A
DS M (MLST'25) [30] 8 3 65.1 110 548 130 49 4 3 N/A
DS L (MLST’25) [30] 8 3 66.6 135 2458 337 140 4 3 N/A
JEDI-linear 8 3 66.5 79 0 136 73 0 1 302.8
JEDI-linear 16 3 73.6 75 0 136 71 0 1 305.7
JEDI-linear 32 3 79.0 80 0 136 79 0 1 299 4
JEDI-linear 64 3 81.8 78 0 164 93 0 1 307.0
JEDI-linear 128 3 81.6 138 0 296 163 0 1 203.1
GNN (AICAS'22) [16] | 30 16 78.7 3000 7417 810 205 924 600 N/A
GNN (FPL’22) [17] 30 16 78.7 1910 11504 1158 246 1392 400 N/A
GNN (FPL'22) [17] 50 16 80.4 10660 12,284 1515 533 1607 650 N/A
GNN J4 (TECS'24) (4] 30 16 78.4 290 8776 865 138 37 30 N/A
GNN J5 (TECS'24) (4] 30 79 905 9,833 911 158 37 150 N/A
GNN U4 (TECS'24) [4] s0 | 3.7~ 11.5x |g(fo 650 8,945 855 201 25 100 N/A
GNN U5 (TECS'24) [4] 50 lower 81.2 905 8,98 815 189 37 150 N/A
JEDI-linear 8 latency (713 67 0 72 40 0 1 311.3
JEDI-linear 16 6 7 72 0 99 50 0 1 307.0
JEDI-linear 32 16 81. 0 147 71 0 1 304.7
JEDI-linear 64 16 82.4 : 0 192 92 0 1 268.1
JEDI-linear 128 16 82.1 110 0 243 111 0 1 237.4

Best Latency
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Evaluation:

Latency &

Resources

. Acc. Latn. LUT FF Finax
Model Particles  Features (%) (ns) DSP (k) (k) BRAM  1II (clk) (MHz)
DS (MLST 24) [7] 8 3 < 64.0 95 386 121 4 3 N/A
DS (MLST 24) [7] 16 3 < 69.4 115 555 747 239 4 3 N/A
DS (MLST 24) [7] 32 3 < 759 130 434 903 359 4 2 N/A
GNN (MLST’24) |7] 8 3 < 64.9 160 2,120 472 192 132 3 N/A
GNN (MLST’24) |7] 16 3 < T0.8 1 5,362 1,388 594 52 3 N/A
GNN (MLST’24) |7] 32 3 < 7H.8 5 2,120 1,162 761 12 3 N/A
DS M (MLST’25) [30] 8 3 65.1 110 548 130 49 4 3 N/A
DS L (MLST’25) [30] 8 3 66.6 135 2,458 EXT) 140 4 3 N/A
JEDI-linear 8 3 66.5 0 136 73 0 1 302.8
JEDI-linear 16 3 73.6 0 136 71 0 1 305.7
JEDI-linear 32 3 79.0 B0 0 136 79 0 | 2994
JEDI-linear 64 3 81.8 78 0 164 93 0 | 307.0
JEDI-linear 128 3 81.6 138 0 296 163 0 1 203.1
GNN (AICAS’22) [16] | 30 16 78.7 3000 7417 810 205 924 600 N/A
GNN (FPL'22) [17] 30 16 78.7 1910 11504 1158 246 1392 400 N/A
GNN (FPL'22) [17] 50 16 80.4 10660 12,284 1515 533 1607 650 N/A
GNN 14 (TECS'24) (4] 30 16 78.4 290 8,776 865 138 37 30 N/A
GNN 15 (TECS'24) (4] 30 16 79.9 9 9,833 911 158 37 150 N/A
GNN U4 (TECS'24) |4] 50 16 80.9 8,945 855 201 25 100 N/A
GNN U5 (TECS'24) |4] 50 16 81.2 05 8,986 815 189 37 150 N/A
JEDI-linear 8 16 73.8 67 0 72 40 0 | 3113
JEDI-linear 16 16 78.3 2 0 99 50 0 | 307.0
JEDI-linear 32 16 81.4 0 147 71 0 1 304.7
JEDI-linear 64 16 824 93 0 192 92 0 1 268.1
JEDI-linear 128 16 82.1 110 0 243 111 0 | 2374

0 Coarse-grained DSPs

14



Evaluation:

Latency &

Resources

e

_ Acc. Latn. LUT | FF Fax
Model Particles  Features (%) (ns) DSP (k) (k) BRAM  1II (clk) (MHz)
DS (MLST’24) [7] 8 3 < 64.0 95 626 121 4 3 N/A
DS (MLST’24) [7] 16 3 < 69.4 115 555 747 239 4 3 N/A
DS (MLST’24) [7] 32 3 < 75.9 130 434 903 359 4 2 N/A
GNN (MLST’24) [7] 8 3 < 64.9 160 2,120 472 192 132 3 N/A
GNN (MLST’24) [7] 16 3 < 70.8 180 5362 1388 594 52 3 N/A
GNN (MLST’24) [7] 32 3 < 75.8 205 2,120 1,162 76l 12 3 N/A
DS M (MLST'25) [30] 8 3 65.1 110 548 130 49 4 3 N/A
DS L (MLST’25) [30] 8 3 66.6 135 2,458 337 140 4 3 N/A
JEDI-linear 8 3 66.5 79 0 136 73 0 1 302.8
JEDI-linear 16 3 73.6 75 0 136 71 0 1 305.7
JEDI-linear 32 3 79.0 80 0 136 79 0 1 299 4
JEDI-linear 64 3 81.8 78 0 164 93 0 1 307.0
JEDI-linear 128 3 81.6 138 0 296 163 0 1 203.1
GNN (AICAS'22) [16] | 30 16 78.7 3000 7417 810 205 924 600 N/A
GNN (FPL’22) [17] 30 16 78.7 1910 11504 1158 246 1392 400 N/A
GNN (FPL'22) [17] 50 16 80.4 10660 12,284 1515 533 1607 650 N/A
GNN J4 (TECS'24) (4] 30 16 78.4 290 8.776 26 138 37 30 N/A
GNN J5 (TECS'24) [4] 30 16 79.9 905 9, 158 37 150 N/A
GNN U4 (TECS'24) [4] 50 16 80.9 5 855 201 25 100 N/A
GNN U5 (TECS'24) [4] 50 16 g12| 6.2x 986 815 189 37 150 N/A
JEDI-linear 8 16 73.8 fewer 0 72 40 0 1 311.3
JEDI-linear 16 16 783 LUTs 0 99 50 0 1 307.0
JEDI-linear 32 16 81.4 7 71 0 1 304.7
JEDI-linear 64 16 82.4 93 0 192 92 0 1 268.1
JEDI-linear 128 16 82.1 110 0 243 111 0 1 237.4

Fewest fine-grained LUTs
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—
E I t . _ Acc.  Latn. LUT FF Frnax
Va u a IO n . Model Particles  Features (%) (ns) DSP (k) (k) BRAM | II (clk) (MHz)
Late nC & DS (MLST 24) [7] 8 3 < 64.0 95 626 386 121 4 3 N/A
y DS (MLST 24) [7] 16 3 < 69.4 115 555 747 239 4 3 N/A
DS (MLST'24) [7] 32 3 < 75.9 130 434 903 359 4 2 N/A
Re SO U rce S GNN (MLST 24) [7] 8 3 < 64.9 160 2,120 472 192 132 3 N/A
GNN (MLST’24) |7] 16 3 < 70.8 180 5,362 138883 594 5 3 N/A
GNN (MLST’24) |7] 32 3 < 7h.8 205 2,120 1,162 76l 3 N/A
DS M (MLST'25) [30] 8 3 65.1 110 548 130 49 4 3 N/A
DS L (MLST'25) [30] 8 3 66.6 135 2,458 337 140 4 3 N/A
JEDI-linear 8 3 66.5 79 0 136 73 1 302.8
JEDI-linear 16 3 73.6 75 0 136 71 1 305.7
JEDI-linear 32 3 79.0 80 0 136 79 0 1 2994
JEDI-linear 64 3 81.8 78 0 164 93 0 1 307.0
JEDI-linear 128 3 81.6 138 0 296 163 0 1 203.1
GNN (AICAS'22) [16] | 30 16 78.7 3000 7417 810 205 924 600 NIA
GNN (FPL'22) [17] 30 16 78.7 1910 11504 1158 246 1392 400 N/A
GNN (FPL'22) [17] 50 16 80.4 10660 12,284 1515 533 1607 650 N/A
GNN 14 (TECS'24) 4] 30 16 78.4 290 8,776 B65 138 37 30 N/A
GNN 15 (TECS'24) 4] 30 16 79.9 905 9,833 911 158 37 150 N/A
GNN U4 (TECS'24) |4] 50 16 80.9 650 8,945 B55 201 100 N/A
GNN U5 (TECS'24) |4] 50 16 81.2 905 8,986 B15 189 7 150 N/A
JEDI-linear 8 16 73.8 67 0 72 40 0 1 311.3
JEDI-linear 16 16 78.3 72 0 99 50 1 307.0
JEDI-linear 32 16 81.4 79 0 147 71 1 304.7
JEDI-linear 64 16 82.4 93 0 192 92 0 1 268.1
JEDI-linear 128 16 82.1 110 0 243 111 0 1 2374
\e—

Lowest iteration interval (ll): time between processing successive jets 16



Comparison with Non-GNN Models (Non-Permutation-Invariant)
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[MLST’25] C. Sun, et al., "Fast Jet Tagging with MLP-Mixers on FPGAs." Machine Learning: Science and Technology, 2025.



Future Work

e ‘"linearization" algorithm-hardware codesign strategy
o efficient and low latency transformer on FPGAs
o demanding applications beyond FPGAs

e High performance trustworthy computing for jet tagging
o JEDI-linear + Bayesian neural network

e Other scientific domains requiring low latency
o aerospace
o healthcare

e Design automation with metaprogramming
o use Python for static and dynamic optimization of C++

18



Summary and Impact

(Artifacts Evaluation Results\:

e A1 Algorithmic Optimization: Available,
o linearization with Global Context Vector strategy Evaluated Functional,
o reduces complexity from O(N2) to O(N) Reusable,
\ J

e A2 Hardware Optimization

o fine-Grained Mixed-Precision Quantization
o Distributed Arithmetic (DA)
o end-to-end automation with RTL generation

e A3 Evaluation: compared to state-of-the-art
o open source: https://github.com/calad0i/JEDI-linear
o 3.7xto 11.5x lower latency, up to 6.3x lower LUT My webpage
o less than 60 ns latency

e next-gen design for CERN: enabling new scientific discoveries
e public code base: novel optimizations for applications beyond jet tagging
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